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Abstract—This paper proposes a mixture of linear dynamical
systems model for quantifying the heterogeneous progress of
Parkinson’s disease from DaTscan Images. The model is fitted to
longitudinal DaTscans from the Parkinson’s Progression Marker
Initiative. Fitting is accomplished using robust Bayesian inference
with collapsed Gibbs sampling. Bayesian inference reveals three
image-based progression subtypes which differ in progression
speeds as well as progression trajectories. The model reveals
characteristic spatial progression patterns in the brain, each
pattern associated with a time constant. These patterns can serve
as disease progression markers. The subtypes also have different
progression rates of clinical symptoms measured by MDS-UPDRS
Part III scores.

Index Terms—Parkinson’s disease, disease progression model,
DaTscans, linear dynamical system, centrosymmetric matrix, t-
distribution

I. INTRODUCTION

Parkinson’s disease (PD) is a neurodegenerative disease
characterized by the loss of dopaminergic neurons in the
substantia nigra. Different individuals with PD progress along
different disease trajectories. This variability is called progres-
sion heterogeneity, or simply, heterogeneity. Heterogeneity is
understood in terms of progression subtypes, each subtype
being a prototypical progression trajectory.

Another characteristic of PD progression is that it exhibits
specific spatial patterns in the brain. These patterns, called
Braak stages [1], have mostly been analyzed by histology
of deceased PD patient brains. Spatial progression patterns in
living PD patients have not yet been reported using DaTscans.

The goal of this paper is to propose a mathematical
model and a Bayesian analysis method to (i) quantify PD
heterogeneity by identifying progression subtypes, and (ii) to
identify spatial progression patterns and their time constants
in living PD patients using longitudinal analysis of DaTscan
images, or DaTscans. DaTscans are the commercial name for
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SPECT imaging with 123I-FP-CIT. DaTscans measure the
local presynaptic dopamine transporter (DAT) density. DAT
density decreases as dopaminergic neurons are lost in PD,
and this manifests as signal loss in DaTscan images [2]. In
early-stage PD, signal loss is most significant in the striatum
[1], hence we study the dynamics of PD progression using the
striatal binding ratio (SBR) [3] in the caudates and putamina.
The SBR at voxel v is defined as SBRv = (Iv −µ)/µ where
Iv is the intensity in voxel v and µ is the mean (or median)
intensity in a reference region, such as the occipital lobe, that
does not have specific ligand binding. The SBR normalizes
for radioligand dose as well as compensates for the amount
of nonspecific radioligand binding.

The model we propose is a mixture of linear dynamical
systems (MLDS). In this model, PD subjects are assigned
to different progression subtypes, where each subtype is
defined by a multivariate linear dynamical system (LDS).
The eigenvectors of the transition matrix of the dynamical
system give spatial progression patterns of DAT loss in the
brain. The corresponding eigenvalues give time constants of
disease progression along these patterns. The data used to fit
the model comes from the Parkinson’s Progression Marker
Initiative (PPMI) (https://www.ppmi-info.org/).

This paper introduces several novel techniques for PD
DaTscan image analysis, and we briefly summarize them here:
First, we model coupled progression of the disease in several
regions of interest. Second, our model is specifically designed
to capture progression heterogeneity. This is in contrast to
most previous PD SPECT or PET image analyses, which only
model a single region-of-interest (ROI) at a time (e.g. [4])
and do not model heterogeneity. Third, we identify a new
constraint called population mirror symmetry. A justification
for the constraint, based on DaTscan data, is presented in
Section II-E. Finally, we use Bayesian analysis with a robust
t-distribution to model the residues. Using the t-distribution
makes the parameter estimates robust to outliers [5], [6].

The paper is organized as follows: We begin in Section II
by a brief review of disease progression literature and of PD
progression. The MLDS model is explained in Section III.
Bayesian inference for the model is in Section IV. The results
of fitting the model to the data are reported in Section V.
Section VI contains a discussion, while Section VII concludes
the paper. Preliminary work using a Gaussian distribution to
model the noise was reported in [7].
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II. PROGRESSION MODELS, PD, AND THE PPMI DATASET

A. Disease Progression Models

Most disease progression models (DPM) reported in the
literature are for Alzheimer’s disease. These DPMs model
the temporal progress of biomarkers such as brain MRI
regional volumes, cerebrospinal fluid measures, and clinical
scores. DPMs can be categorized as either event-based, explicit
function of time-based, or differential equation-based.

Event-based models are discrete in time; they define various
disease stages and model transitions from one disease state to
another. An example is [8], where transitions from normal to
severe atrophy in different brain regions are defined as events.
The model finds a consistent ordering of these events in a
group of subjects. Enhanced versions of this basic model, with
more events and applied to the ADNI dataset are in [9], and
with different orderings for different groups of subjects and
subject specific orderings in [10], [11].

In contrast to event-based models, explicit function models
characterize the continuous longitudinal progress of biomark-
ers by a parametric or a non-parametric function of time and
other variates. An example of parametric modeling is [12]
which regresses covariates such as time, baseline age, brain
regional volume with cognitive scores [12]. A similar scheme
with subject specific time shift is used with the PPMI data in
[13]. Non-linear models with logistic [14] or sigmoidal [15]
functions are also used. For high-dimensional data, clustering
is used to reduce the number of parameters [16]. An example
of a non-parametric model is [17] where disease trajectories
are modeled with a group-wise monotonic Gaussian process
trajectory plus an individual trajectory. In the above models,
time explicitly enters the regression. In contrast are models
where image features at different time points are regressed to
clinical scores [18], [19].

Differential equation models use a differential equation to
model the longitudinal trajectories of biomarkers, e.g. [20],
[21]. Neurodegenerative diseases progress by toxic protein
transmission along neuronal pathways [22]. This suggests that
modeling neuronal pathways as edges in a graph can lead to
using diffusion on the graph as a model for disease progression
[23], [24]. An extension adds regional sporadic stimulus [25]
to the model. Recently, a graph-based differential equation has
been applied to MRI images of PD relating atrophy patterns
to diffusion seeded at the substantia nigra [26].

Bayesian analysis has been used with neurodegenerative
DPMs before [8], [10], [12], [13]. However, to the best of
our knowledge, Bayesian modeling of a mixture of linear
dynamical systems has not been reported with PD DaTscans.

As mentioned above, most of the above methods are de-
signed for Alzheimer’s disease, and they predominantly use
MRI images. In contrast, our goal is to model Parkinson’s
disease progression using DaTscans. DaTscans do not provide
any connectivity information.

B. Early Stage Parkinson’s Disease

PD progression in DaTscans is quantified by ROI analysis
which shows that the mean SBR in the putamen and caudate
decreases exponentially with time [27], [28]. Exponential

decrease is also observed with PET (non-DaTscan) imaging
tracers [4]. The rates of SBR decrease vary widely, from 5% to
13% per annum, indicating strong heterogeneity [27]. Because
the putamen is affected before the caudate in the early stages
[1], the difference between the mean SBR in the putamen and
the caudate is taken as an indicator of disease progression [29].

Early-stage PD is also asymmetric; one brain hemisphere
is affected more than the other [30]. Asymmetry is caused by
a complex interplay of hereditary and environmental factors
[31]. Initially, either brain hemisphere may be affected with
almost equal probability, but the disease becomes more sym-
metric as it progresses.

C. Parkinson’s Disease Subtypes

In the PD literature, subtypes are usually derived from clin-
ical examination, i.e. from the Movement Disorders Society’s
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)
scores, resulting in subtypes such as akinetic/rigid-dominant or
tremor-dominant [32]. Typically, clinical progression subtypes
are found by clustering the baseline clinical scores and com-
paring the progression rates of these clusters [33], [34]. A re-
view of these methods is available in [32]. Recently, a complex
combination of neural networks, dynamic time warping, t-SNE
embedding and k-means was used to cluster the PPMI data
[35] into subtypes. To the best of our knowledge progression
subtypes have not been found so far using DaTscans.

D. The PPMI Dataset

The PPMI DaTscan dataset has 449 early-stage PD
subjects. Their demographics are as follows: 65% of the
subjects are male, 35% are female. Their ages at the time
of entry into the study are 34 − 85 years, with a median
age of 63 years. The subjects are scanned at baseline, and
then approximately at 1, 2, 4, and 5 years from baseline (the
imaging protocol for the PPMI DaTscans is documented in
http://www.ppmi-info.org/wp-content/uploads/2013/02/PPMI-
Protocol-AM5-Final-27Nov2012v6-2.pdf). Not all subjects
have a scan for all of these time points, and the scan times
for different subjects are not exactly at 1, 2, 4, 5 years.

The PPMI dataset also has longitudinal MDS-UPDRS
scores for the subjects. We relate the image subtypes to Part
III of the scores.

E. Population-level Mirror Symmetry

There is a population-level symmetry in the PD DaTscans.
For every PD patient whose brain is asymmetrically affected
in one direction, there is another patient whose brain is
asymmetrically affected in the reverse direction. Moreover
these subjects progress in a mirror image fashion. Fig. 1
illustrate this. The subfigures plot the time series of the
mean SBR in the bilateral caudates and putamina for the
PPMI subjects. The time series for every subject is plotted
as a sequence of vectors, each vector pointing from a time
point to the subsequent time point. The vectors are rendered
with continuously changing colors that denote time from the
baseline DaTscan. The relation between color and time is in
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Fig. 1. Time series of the mean SBR in the left caudate (LC), right caudate
(RC), left putamen (LP), and right putamen (RP) for 365 subjects from the
PPMI dataset. The arrows are rendered with continuously changing colors that
correspond to the 5 year period indicated by the colorbar on the left side. The
asymmetry of the disease is observable at baseline; in approximately 45% of
the subjects, the right hemisphere is more severely affected at baseline. The
left hemisphere is more severely affected in the rest.

the colorbar on the left. A 45 degree line is also shown. Any
departure from this line represents asymmetry. Note that the
spread of the data exhibits mirror symmetry around the 45
degree line. That is, given a time series for a subject, its mirror
image across the 45 degree line is also a valid time series. This
implies that if we were to use a single model to describe all of
the trajectories in a population, then the model should remain
invariant if we swapped the right and left hemispheres for all
subjects. We call this property population mirror symmetry.

III. THE MLDS MODEL

Leaving aside the issue of subtypes for now, Fig. 1 sug-
gests a single multivariate linear dynamical system (LDS)
as a model for all disease trajectories. Suppose that the
mean SBR in the left caudate (LC), left putamen (LP), right
putamen (RP), right caudate (RC) are arranged in a vector
x = [LC, LP, RP, RC]T , then the time evolution of x can be
modeled as the LDS dx/dt = Ax, where A is a D × D
transition matrix (D = 4). This model is coupled as long
as A is not a diagonal matrix. The solution of the LDS is
x(t) = eAtx(0), where eAt is the matrix exponential and

x(0) is the initial condition. The solution has interesting, and
well-known, properties:

1) The semi-group property: Suppose x(t) is a time series
that satisfies dx(t)/dt = Ax(t). Further suppose that we
observe this time series starting from some later point
in time, i.e. suppose y(t) = x(t + T ), T > 0. Then
y(t) continues to follow the same differential equation
without time shift, i.e. dy(t)/dt = Ay(t), an equation
that is independent of T .

2) For a given A, the initial condition x(0) determines
the entire trajectory. Since different PD patients have
different initial conditions, the trajectory determined by
the differential equation is automatically subject-specific.

These properties suggest that as far as fitting a matrix A to a
time series goes, it is not essential to know, or to model, the
exact starting time for every patient.

Different progression subtypes can be described by different
LDSs (with different transition matrices A). This leads to the
mixture of linear dynamical systems (MLDS) model. We make
two comments about this model before we give mathematical
details:

First, a subtype in this model does not correspond to a
single speed of progress, neither does the model cluster the
time series by progression speeds. The differential equation
dx/dt = Ax expresses a relation between the values of the
SBRs (at any point in time) to the rates of change of SBRs at
that point in time. The values of SBR and its rate (speed) can
be arbitrary; all that the equation requires is that the relation
between the two be similar for subjects to be modeled by the
same equation.

Second, different subtypes modeled in this way cannot be
seen as early or late stages of a single trajectory. Suppose
dx1(t) = A1x1(t) and dx2(t)/dt = A2x2(t) with A1 6= A2.
Then, excluding trivial initial conditions similar to x1(0) =
x2(0) = 0, there is no time shift T 6= 0 (positive or negative)
such that x1(t) = x2(t+ T ) for all t.

We now give mathematical details of this model beginning
with the constraint on A due to population mirror symmetry.

A. Dynamical System with Population Mirror Symmetry

Given the arrangement of x that we use (i.e. LC, LP, RP,
RC), population mirror symmetry is mathematically equivalent
to saying that the differential equation dx/dt = Ax remains
invariant under a permutation that swaps the right SBRs with
the left SBRs.

Definition 1. π : RD → RD is a symmetric permutation if
(π(x))i = (x)D−i+1 for i = 1, · · · , D, for any x ∈ RD,
where (x)k refers to the kth component of the vector x.

Because of the way the SBRs are arranged in the vector
x, population mirror symmetry corresponds to applying a
symmetric permutation to x. Applying this permutation to both
sides of dx/dt = Ax gives: π(dx/dt) = dπ(x)/dt = π(Ax).
Population mirror symmetry requires dπ(x)/dt = Aπ(x), i.e.
π(Ax) = Aπ(x). It is easy to check that this constraint
is mathematically equivalent to the pre-processing procedure
in the clinical literature that relabels the two hemispheres of



IEEE TRANSACTIONS ON MEDICAL IMAGING 4

all the subjects to dominant/non-dominant for analysis (hence
ignores the left/right difference and assumes a mirror-like
progression pattern) [4].

Population mirror symmetry is equivalent to A being a
centrosymmetric matrix:

Definition 2. A D × D matrix A is centrosymmetric if
π (Ax) = Aπ (x) for all x ∈ RD, where π is a symmetric
permutation [36].

In terms of elements of A, centrosymmetry means that
(A)i,j = (A)D−i+1,D−j+1. Loosely speaking, centrosymme-
try means that elements which are located on the same line
through the center of the matrix, but which are on opposite
sides of the center, are equal.

Definition 3. The dynamical system dx/dt = Ax has popu-
lation mirror symmetry if A is a centrosymmetric matrix.

From now on we assume that our dynamical system has
mirror symmetry. The following properties of centrosymmetric
matrices are important for developing and interpreting our
model:

1) The set of all D × D centrosymmetric matrices is a
subspace of the vector space of D × D matrices. This
subspace has dimension dD2/2e.

2) If the eigenvalues of a centrosymmetric matrix are dis-
tinct, then the corresponding eigenvectors are either sym-
metric or anti-symmetric [36].

The first property indicates that the number of parameters
used in fitting a centrosymmetric matrix is reduced by half
for even numbered D. The second property has implications
for interpreting the differential equation dx/dt = Ax.

To see the significance of interpreting a differential equation
with a centrosymmetric transition matrix, note that the solution
of the differential equation can be written as

x (t) =
∑
i

cie
λitvi (1)

where {vi : i = 1, . . . , D} are the eigenvectors of A and
{λi} are the corresponding eigenvalues, and [c1, . . . , cD]

T
=

V−1x (0) where V = [v1, . . . ,vD]. The eigenvectors
v1, . . . ,vD are linearly independent but are not guaranteed
to be orthonormal. Hence the coefficients of x along the
eigenvectors are found by taking the inner product of x with
the dual basis of v1, . . . ,vD. Suppose {u1, . . . ,uD} is such a
dual basis, i.e. UTV = I where U = [u1, . . . ,uD]. We have
an exponential function for projected SBR values along each
ui, uTi x(t) = eλitci.

The dual basis of V are eigenvectors of AT with the same
eigenvalues as that of A. Since AT is also centrosymmetric,
the dual basis vectors are also either symmetric or anti-
symmetric. The symmetry/anti-symmetry of the dual basis of
the eigenvectors of the transition matrix has an interesting
interpretation. If ui is symmetric, i.e. ui = [α, β, β, α]T ,
then the projection uTi x(t) is the linear combination α ×
LC + β × LP + β × RP + α × RC, i.e. the projection is
a symmetric measurement across the brain hemispheres. If
ui is anti-symmetric, then the projection is an asymmetric
measurement. Thus projecting on the dual basis tells us how

symmetric and asymmetric parts of the SBR vector evolve –
they evolve with the corresponding λi as time constants. Note
however, that because the dual basis is not orthonormal, the
orthogonal projection uTi x(t) is not the component of x(t)
along ui. Rather it is the component of x(t) along vi.

B. Discretization and Probabilistic Formulation

Suppose that SBRs are available for N subjects and the ith

subject has SBRs xi1, . . . ,xi,Ti at time points τi1, . . . , τi,Ti ,
where Ti is the total number of time points and the time points
are not assumed to be evenly spaced. Then, the time series for
the ith subject can be modeled by a discrete version of the
linear differential equation dx/dt = Ax as:

xi,j+1 − xij
∆tij

= Axij + εij , (2)

where ∆tij = τi,j+1 − τij , and εij is the model residue. The
residue is assumed to follow a Student’s t-distribution, i.e.
εij ∼ T

(
0, σ2ID, ν

)
where σ2ID is the scale matrix and ν

is the degree of freedom.
Letting xi = {xi1, . . . ,xi,Ti} denote the entire time series

for subject i,

p
(
xi|A, σ2, ν

)
= p (xi1)

Ti−1∏
j=1

p
(
xi,j+1|xij ,A, σ2, ν

)
, (3)

where we assume that the probability distribution of the first
element of the time series is p (xi1) = N (xi1|0,Σ), and the
conditional probability distribution is

p
(
xi,j+1|xij ,A, σ2, ν

)
=T

(
xi,j+1|xij + ∆tijAxij ,∆t

2
ijσ

2ID, ν
)
. (4)

The form of the conditional distribution follows from (2) and
the t-distribution. The distribution p (xi1) = N (xi1|0,Σ) is
the same for every subject. It models the “spread” of initial
data xi1, which we take to be independent of A, σ2, ν.

Directly expressing p
(
xi,j+1|xij ,A, σ2, ν

)
as the t-

distribution causes technical problems in Bayesian inference
– there are no conjugate priors for A, σ2, ν. However, a
standard modification makes it possible to create conjugate
priors for A, σ2, ν [37], [38]. The modification follows from
the observation that a t-distributed random variable can be
generated by first sampling a scalar random variable from
a Gamma distribution, and then sampling from a Gaussian
distribution with a covariance matrix scaled by the Gamma
distribution sample, i.e.

T (x|µ,Σ, ν) =

∫
N (x|µ,Σ/w) Ga

(
w|ν

2
,
ν

2

)
dw, (5)

where w is the scale parameter. To use this formulation, we
introduce latent scale variables {wij : i = 1, . . . , N, j =
1, . . . , Ti − 1} with p (wij |ν) = Ga

(
wij |ν2 , ν2

)
, and write (4)

with a normal distribution on the right hand side:

p
(
xi,j+1|xij , wij ,A, σ2

)
=N

(
xi,j+1|xij + ∆tijAxij ,∆t

2
ijσ

2ID/wij
)
. (6)
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With this modification, we can rewrite (3) as

p
(
xi|wi,A,σ

2
)

= p(xi1)

Ti−1∏
j=1

p
(
xi,j+1|xij ,wij ,A,σ2

)
, (7)

where wi = (wi1, . . . , wi,Ti−1) and p (wi|ν) =
∏
j p (wij |ν).

Note that according to (5), combining p
(
xi|wi,A, σ

2
)

and
p (wi|ν) with wi integrated out gives the time series distri-
bution in (3). This is the discretized probabilistic version of
dx/dt = Ax with t-distributed model residues.

C. The Mixture Model
All subjects that have the same transition matrix belong

to the same subtype. To extend the model to K distinct
progression subtypes, we allow each subtype to have its own
transition matrix Ak and model residue σk. Let zi be a latent
random variable taking values in {1, 2, . . . ,K} and indicating
the subtype of the ith subject. Given zi, the probability density
of the time series xi of the ith subject is the density of (7) with
Azi and σzi :

p
(
xi|zi,wi,

{
Ak, σ

2
k

})
= p

(
xi|wi,Azi , σ

2
zi

)
. (8)

The latent variable zi has a categorical distribution:

p (zi|π) = Cat (zi|π) =

K∏
k=1

π
I(zi=k)
k = πzi , (9)

where π = (π1, · · · , πK), such that πl ≥ 0 for all l and∑
l πl = 1. Also I (·) = 1 if the argument of I is true and

zero otherwise.
Finally, let X = {x1, . . . ,xN}, W = {w1, . . . ,wN}, and

z = (z1, . . . , zN ) denote the time series, the latent variables
for the t-distribution, and the latent variables for the class
labels. Setting θ =

{
π,Al, σ

2
l : l = 1, . . . ,K

}
gives

p (X|z,W,θ) =

N∏
i=1

p
(
xi|zi,wi,

{
Al, σ

2
l

})
, (10)

p (W|ν) =

N∏
i=1

p (wi|ν) , p (z|θ) =

N∏
i=1

p (zi|π) (11)

as the complete model. Note that integrating out the latent
variables W and z gives the mixture model

p (X|θ, ν) =

N∏
i=1

p (xi|θ, ν) =

N∏
i=1

K∑
k=1

πkp
(
xi|Ak, σ

2
k, ν
)
.

where p
(
xi|Ak, σ

2
k, ν
)

is defined in (3). We want to infer the
parameters θ and ν from the observed data X.

IV. BAYESIAN INFERENCE

Our Bayesian inference methodology is to use Gibbs sam-
pling, and to keep the sampling scheme tractable we use priors
that are conjugate to the conditional densities in (10) and (11):

p (π|α) = Dir (π|α) , (12)

p (ν|γ) ∝
[ (

ν
2

) ν
2

Γ
(
ν
2

)]ξ0 eτ0ν , ν > 0, (13)

p
(
ak, σ

2
k|β
)

= NIG
(
ak, σ

2
k|µ0,Λ0, ν0, κ0

)
= N

(
ak|µ0, σ

2
kΛ
−1
0

)
IG
(
σ2
k|ν0, κ0

)
, (14)

α

π Ak σk
K

β

zi

xi1 xi2

· · ·
xi,Ti

Σ

wi1 · · · wi,Ti−1

N

ν

γ

Fig. 2. Probabilistic graphical model of the MLDS with t-distributed residues.
It features a standard structure of four layers: hyperparameters (α,β,γ), pa-
rameters to infer (θ =

{
π,Ak, σ

2
k

}
, ν), latent variables (z = (z1, . . . , zN ),

W = {w1, . . . ,wN}), and observed data (X = {x1, . . . ,xN}).

where Dir (·) is the Dirichlet distribution, NIG (·) is
the normal-inverse-gamma distribution, IG (x|a, b) =
ba

Γ(a)x
−(a+1)e−

b
x , and α = (α/K, . . . , α/K), γ = {ξ0, τ0},

β = {µ0,Λ0, ν0, κ0} are hyperparameters. We define
the prior on Ak using its coordinates on a basis for
centrosymmetric matrices, i.e. vec (Ak) = Eak where the
jth column of E has the form [. . . , 1, . . . , 1, . . . ]

T where
1 only appears at the jth position and the (D2 − j + 1)th

position and the others are zero. The rationale for choosing
(14) for p (X|z,W,θ) and (13) for p (W|ν) is provided in
Supplementary Section II.

With these priors, the probabilistic graphical model is shown
in Fig. 2. We can infer the parameters by drawing samples
from the posterior p (z,θ,W, ν|X,α,β,γ).

A. The Gibbs Sampler

A detailed derivation of the Gibbs sampler is available in
Supplementary Section III. Here we briefly describe the salient
points of the sampler. The sampler works by sampling z, θ
and W, ν in sequence conditioned on the remaining random
variables. The sampling proceeds as below:
1. Sample p(z,θ|X,α,β,W) as follows:
1.1. Sample z from p(z|X,α,β,W) with θ integrated out.

This is known as collapsed Gibbs sampling [39]. Sam-
pling z corresponds to sequentially sampling each zi
given the rest {zj : j 6= i}.

1.2. Sample θ from p(θ|z,X,α,β,W) by sampling π from
a Dirichlet distribution and Ak, σ

2
k from a NIG distribu-

tion.
2. Sample p(W, ν|X,γ, z,θ) as follows:
2.1. Sample W from p(wij |X,γ, z,θ, ν) by independently

sampling each wij from a Gamma distribution.
2.2. Sample ν from p(ν|W,γ) using adaptive rejection sam-

pling (ARS) [40].
A detailed version of this algorithm is in Supplementary Sec-
tion III-B. The above steps are iterated till the chain converges
and provides sufficient samples for parameter estimation.
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We set the hyperparameters to α = K, β =(
0, 10−8IdD2/2e, 10−3, 10−3

)
, γ =

(
10−3, 10−3

)
, which cor-

responds to having weak priors. The initialization of each
sampling chain is done by assigning each zi ∈ {1, . . . ,K}
randomly, wij = 1,∀i, j, ν = 30. Following Section 11.4
of [41], we run 5 chains (1500 iterations each) with random
initialization, discard the first half of each chain as burn-in
samples, and split the remaining samples to calculate a ratio
of between-sequence variance and within-sequence variance
of log p (X|θ, ν) to check convergence. For any combination
of chains, if this ratio is close to one, we conclude that
this combination converges to the same distribution. We pick
samples from one chain of a converged combination for
analysis.

Following standard Bayesian methodology, we take the
parameter estimates to be the averages of the post-burn-in
samples of the converged chain. The estimates of the transition
matrices Ak are of particular importance, since they define
the progression subtypes. We estimate Ak by the mixture
estimator [42]:

Âk =
1

L

L∑
l=1

E (Ak|z = zl,W = Wl−1, ν = νl−1,X,α,β,γ)

where L is the number of post-burn-in samples. The means
on the right hand side are directly available when we sample
Ak, σ

2
k. The above estimator has a lower variance than the

empirical estimator (i.e. averaging the samples) according to
the Rao-Blackwell theorem (see Section 2.4.4 in [43]).

B. Model Selection

The Gibbs sampler described above estimates model param-
eters, once the number of subtypes (the number of components
of the model) are known. To find the number of subtypes, we
use cross validation and Bayesian model selection [44], [45].
For cross validation, we divide the dataset into 10 subsets
(10-fold cross-validation). Using each subset as test set, we
use the remaining data as training set to infer the parameters
θ, ν. Then, the log-likelihood of each test set is evaluated and
the sum of these log-likelihood values is considered for each
K ∈ {1, . . . ,Kmax}, where Kmax is the maximum number of
components considered.

For Bayesian model selection, we denote ηK = {α,β,γ}
for the hyperparameters with K components, and let H ={
η1, . . . ,ηKmax

}
. Assuming p (K) ∝ constant on K =

1, . . . ,Kmax, we have

p (K|X,H) ∝ p (K) p (X|H,K) ∝ p (X|H,K) = p (X|ηK) .

Finding the optimal K̂ = arg maxK p (K|X,H) is equivalent
to finding the maximum of p (X|ηK) which can be evaluated
by the integral

p (X|ηK) =

∫
p (X|θ, ν) p (θ, ν|ηK) dθdν. (15)

Since the Gibbs sampler has already generated samples from
p (z,θ,W, ν|X,ηK), we use importance sampling with the
proposal distribution p (θ, ν|X,ηK) to calculate the integral.
The details are in Supplementary Section IV.

V. RESULTS

A. Data Preparation

The PPMI DaTscan dataset was described earlier in Section
II-D. The DICOM headers for PPMI DaTscan images reveal
that the images have a size of 109 × 91 × 91 voxels, with 2
mm3 isotropic voxels. The images are distributed by PPMI and
already registered in standard Montreal Neurological Institute
(MNI) space. However, we did find some misregistered images
in the data. These were eliminated in the preprocessing step
described below. After elimination, the mean SBRs in the
caudates and the putamina were obtained using the MNI atlas,
which is also explained below.

Image Pre-processing: We pre-processed the image data in
two steps. First, we eliminated all subjects that had only one
scan, since time series information cannot be gleaned from a
single scan. This led to 382 remaining subjects. Next, we elim-
inated all subjects that had misregistered images. Misregistered
images were found by taking the image sequence for every
subject and calculating the correlation coefficient of all voxels
outside the striatum between every pair of images in the series.
The smallest correlation coefficient in this set was taken as
the indicator of misregistration. If this indicator was less than
the median minus three times the mean absolute deviation of
correlation coefficients of all subjects, then the entire sequence
for the subject was removed. This step eliminated 17 such
subjects, leaving 365 subjects, which entered the analysis (id’s
of the eliminated subjects are available in the supplementary
material). Of these subjects, 45 had 2 scans, 190 had 3 scans,
127 had 4 scans and 3 had 5 scans.

Next the SBR feature vectors xij were extracted from the
images by using a set of 3D masks for the two caudates,
two putamina, and the occipital lobe. Fig. 3 shows the masks
overlaid on a subset of the axial slices of the mean baseline
image of all subjects. The masks for the caudates and putamina
were taken from the MNI atlas, dilated by 1 voxel and
smoothed by a Gaussian filter with σ = 0.5 pixels to capture
the partial volume effects. The occipital lobe mask was created
manually, and is similar to the mask in [29]. Then, the median
of the occipital lobe was used as the denominator to calculate
the SBR at each voxel, and mean SBRs in the caudates and
putamina were organized as xij as described in Section III-A.
PPMI also provides imaging dates for all subjects, and these
dates were used to calculate the time intervals ∆tij .

B. Simulation on Synthetic Dataset

Because Bayesian analysis is new to PD DaTscan image
analysis, we first evaluated its accuracy – especially clustering
accuracy – by creating a synthetic dataset with known class
labels. To create a synthetic dataset that is close to real
DaTscan data, we used our algorithm on the real PPMI dataset
with 3 clusters (see Section V-C) to obtain estimates of the
model parameters ({π̂, Âk, σ̂

2
k}, ν̂). Using these estimated

parameters, we created a low, medium and large noise dataset
(the noise σk’s were set to 0.1λσ̂k with λ = 2, 1, 0) by keeping
existing {xi1} and {∆tij} and generating the remaining data
according to (4). We also set πk = 1/K to ensure that the
data are evenly distributed across different classes.
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Fig. 3. Masks for the left and right caudates (red), left and right putamina
(green), and the occipital lobe (blue). The background shows the 33rd - 42nd
slices of the mean baseline image.

TABLE I
CLUSTERING AND PREDICTION ACCURACIES OF GIBBS SAMPLING VS.

THE EM-ALGORITHM USING A SYNTHETIC DATASET.

Noise Level 0.01σ̂k 0.1σ̂k σ̂k
Purity Rd Id Pr Er Purity Rd Id Pr Er Purity Rd Id Pr Er

Gibbs-t b 1.000a 1.000 0.004 0.997 0.996 0.037 0.853 0.644 0.393
Gibbs 1.000 1.000 0.004 0.997 0.996 0.037 0.781 0.642 0.401
EM c 0.988 0.938 0.022 0.988 0.957 0.045 0.758 0.629 0.408

a The best entry in each category is boldfaced.
b Gibbs-t / Gibbs is the proposed Gibbs sampling with t-distributed /

normal-distributed model residues.
c EM is the version that maximizes the likelihood without the centrosym-

metric constraint.

We divided this synthetic dataset randomly into 10 subsets
where 9 subsets were retained for training and 1 subset for
testing (rotated over all subsets). This procedure was repeated
10 times and Gibbs sampling was run on the 10 by 10 training
sets. For comparison, we also ran two other algorithms: 1. An
EM algorithm that maximizes the log-likelihood of p (X|θ, ν)
of Section III-C, but with Gaussian noise. 2. A simplified
Gibbs sampling with Gaussian noise and the centrosymmetric
constraint [7].

We used three measures to compare clustering accuracies of
the algorithms. The first measure is purity, which measures the
percentage of overlap of estimated and true class labels. The
second measure is Rand index, which measures the proportion
of data point pairs that are in agreement with the true labels
in terms of falling in the same class or different classes [46].
Purity and Rand index have range 0 - 1, where 1 represents
perfect clustering. The third measure is prediction error. We
use the MLDS model to predict the SBR values for time
points ≥ 3 and take the prediction error to be the difference
(L1 norm) between the prediction and true values (details in
Supplementary Section V).

Table I shows the mean purity and mean Rand index over
the 10 by 10 training sets, and mean prediction error over
the 10 by 10 test sets, for the three methods. We see that the
Gibbs sampling algorithms outperform the EM algorithm for
all performance measures. The two Gibbs samplers perform
very similarly except for the large noise case, where the
t-distribution version has a higher purity and Rand index
and lower prediction error. This analysis of synthetic data
justifies the use of Bayesian analysis with t-distributions over
maximum-likelihood methods.
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(a) Cross Validation (b) Bayesian Model Selection

Fig. 4. Model selection using cross validation (a) and Bayesian (b). The y-
axis has two scales corresponding to log-likelihood value (blue solid square)
and final number of nonempty subtypes (orange dashed star) respectively. The
number of nonempty subtypes is averaged over 10 folds for cross validation.

C. Fitting MLDS to the PPMI Data

Having established the superiority of Gibbs sampling with
synthetic data, we turn to analyzing real PPMI data. We
first determined the number of subtypes using cross-validation
and Bayesian model selection as described in Section IV-B,
and then used Bayesian analysis to explore the posterior
distribution of the parameters.

1) Determining the number of subtypes: The results of
using cross-validation and Bayesian model selection are shown
in Fig. 4. The number of subtypes explored was between 1 and
10 (Kmax = 10). The blue solid curve in Fig. 4(a) shows the
log-likelihood of the test sets as a function of the number
of subtypes. As the number of subtypes increases, several
subtypes turn out to be empty, i.e. no subjects are assigned
to that subtype. The orange dashed curve in Fig. 4(a) shows
the mean number of nonempty subtypes. Fig. 4(b) shows the
same two quantities for Bayesian model selection.

Fig. 4 clearly shows that the log-likelihood values for cross-
validation and Bayesian model selection behave similarly. The
log-likelihood increases monotonically from 1 to 3 subtypes
and then appears to saturate. The number of nonempty sub-
types found by both methods is similar as well. In the final
model, we chose 3 subtypes (K = 3) for further analysis.

2) Parameter estimation and interpretation: The MLDS
model with three subtypes (K = 3) was fit to the PPMI
dataset using Bayesian analysis. The clustering results are
shown in Fig. 5. The subtype label is created by cal-
culating p (zi|X,α,β,γ) from the samples, and assigning
arg maxk p (zi = k|X,α,β,γ) to subject i. This gives us 46,
257, and 62 subjects in subtypes 1, 2, and 3 respectively. As
the estimated trajectories show, different subtypes progress
with different speeds with subtype 1 being the fastest and
subtype 3 being the slowest. The mean and standard deviation
of the posterior distribution of the parameters are shown in
the top half of Table II for each subtype. The bottom half
of Table II (rows indicated by λ,v,u) shows the eigenvalues,
eigenvectors and dual basis of the eigenvectors of the mean
transition matrix for each subtype.

The main characteristics of Table II are: Row πk (mixing
coefficient) in Table II indicates that subtype 2 has the highest
occupancy; a little over half of the subjects are contained
in this subtype. Subtype 3 and 1 have sequentially smaller
occupancy. All subtypes have similar values for σk, suggesting
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Fig. 5. Clustered time series of the mean SBR for all the PPMI subjects. The columns show the subtypes discovered by the proposed approach. The arrows
are rendered with continuously changing colors that correspond to the 5 year period indicated by the colorbar on the left side. We can see that different
subtypes exhibit different progression rates. We also show our estimated trajectory starting from a fixed point (x = [1, 0.75, 1, 1.5]T ) and its reflection
(duration indicated by the colorbar on the right side).

that all subtypes have similar model residues.
Different subtypes have different progression rates and

progression trajectories, i.e. the MLDS model has successfully
captured PD heterogeneity. The variability in progression
rates is apparent in the eigenvalues of the transition matrices
in Table II (row λ). All eigenvalues are real, distinct, and
negative. Checking the magnitude of the eigenvalues, we see
that subtype 1 is the fastest progressing subtype, followed by
subtype 2 and then by subtype 3. Further evidence for the
relative speeds of the subtypes can be directly found in Fig. 6,
which shows histograms of starting speeds (i.e. the magnitude
of xi2−xi1

∆ti1
) of all subjects in each subtype (initial changes

are the largest and therefore present the clearest evidence in
presence of noise).

The subtypes differ not only in speed but also in the shape of
the SBR trajectories as well. This is apparent in Fig. 5 which
shows the SBR trajectories of subjects in each subtype. The
figure also shows model trajectories (smooth curves overlaid
on raw trajectories) for two initial points. These trajectories
clearly have different speed, extent, and shape.

The spatial patterns of progression as evident in the dual ba-
sis of the eigenvectors of the transition matrices are especially
interesting. Recall from Section III-A that a symmetric or anti-
symmetric dual basis vector can be interpreted as representing
the symmetry or asymmetry of the disease across the two
brain hemispheres. Since all eigenvalues are real and negative,
symmetric/anti-symmetric dual basis vectors capture how the

Fig. 6. Histograms of the initial speeds for subtypes 1, 2, and 3. The median
velocities are 0.36, 0.19, and 0.13 SBR/year respectively.

symmetry/asymmetry of dopamine transporter concentration
(i.e. the mean/difference of α×Caudate+β×Putamen between
both hemispheres) changes as the disease progresses.

The leading dual basis vector in every subtype in Table II
(row v) is anti-symmetric, with α, β having opposite signs.
This implies that the loss of asymmetry in the disease is the
fastest spatial progression pattern among all linear combina-
tions of SBRs. The last dual basis vector in subtype 1 and 2
is symmetric with α, β having the same sign. This dynamical
mode clearly represents the “mean” of all four regions. Since
this mode has the smallest eigenvalue, the mean SBR is the
slowest index of disease progression in early-stage PD. Thus
Table II suggests that the rate of asymmetry change is several
times faster than the change in the mean SBR.

3) Relation to Demographics: Fig. 7 shows violin plots
of the age and sex distribution of PD subjects in the three
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TABLE II
PARAMETERS AND EIGENSTRUCTURE ESTIMATED BY BAYESIAN INFERENCE.

Estimated Parameters (mean (std))a

Subtype k = 1 k = 2 k = 3

ν 2.85 (0.21)
πk 0.146 (0.036) 0.612 (0.081) 0.242 (0.076)
σk 0.064 (0.007) 0.059 (0.003) 0.067 (0.005)

Ak

−0.33 (0.06) 0.16 (0.07) −0.10 (0.06) 0.09 (0.05) −0.21 (0.02) 0.12 (0.03) −0.01 (0.03) 0.04 (0.02) −0.09 (0.04) 0.05 (0.05) −0.08 (0.05) 0.08 (0.04)

0.15 (0.06) −0.44 (0.08) 0.09 (0.06) −0.05 (0.05) 0.06 (0.02) −0.22 (0.03) 0.07 (0.02) −0.02 (0.02) 0.13 (0.03) −0.24 (0.05) 0.03 (0.05) −0.01 (0.04)

−0.05 (0.05) 0.09 (0.06) −0.44 (0.08) 0.15 (0.06) −0.02 (0.02) 0.07 (0.02) −0.22 (0.03) 0.06 (0.02) −0.01 (0.04) 0.03 (0.05) −0.24 (0.05) 0.13 (0.03)

0.09 (0.05) −0.10 (0.06) 0.16 (0.07) −0.33 (0.06) 0.04 (0.02) −0.01 (0.03) 0.12 (0.03) −0.21 (0.02) 0.08 (0.04) −0.08 (0.05) 0.05 (0.05) −0.09 (0.04)

Estimated Eigenstructureb

λ −0.71 −0.39 −0.23 −0.20 −0.37 −0.22 −0.16 −0.09 −0.37 −0.18 −0.08 −0.02

v

LC 0.46 0.26 0.58 0.59 0.50 0.64 0.60 0.59 0.40 0.13 0.58 0.59

LP −0.54 −0.66 0.40 0.39 −0.50 −0.30 0.38 0.39 −0.58 0.70 0.41 0.39

RP 0.54 −0.66 −0.40 0.39 0.50 −0.30 −0.38 0.39 0.58 0.70 −0.41 0.39

RC −0.46 0.26 −0.58 0.59 −0.50 0.64 −0.60 0.59 −0.40 0.13 −0.58 0.59

u

LC 0.41 0.40 0.54 0.67 0.39 0.46 0.51 0.35 0.41 −0.54 0.58 0.97

LP −0.58 −0.60 0.46 0.27 −0.61 −0.70 0.51 0.75 −0.58 0.82 0.40 −0.18

RP 0.58 −0.60 −0.46 0.27 0.61 −0.70 −0.51 0.75 0.58 0.82 −0.40 −0.18

RC −0.41 0.40 −0.54 0.67 −0.39 0.46 −0.51 0.35 −0.41 −0.54 −0.58 0.97

a π is the fraction of the PD subjects that are contained in each subtype. Ak and σ2
k are the transition matrix and the unscaled variance for each subtype.

b The bottom half shows the eigenvalues (λ), the eigenvectors (v) and the dual basis of the eigenvectors (u) of the mean transition matrices.

Fig. 7. Age and sex distribution in image-based subtypes.

subtypes. The 95-percentile age range in the three subtypes is
61.0± 18.1, 63.2± 19.3, 61.5± 22.2 years respectively. A t-
test with a null hypothesis of equality of means of the ages of
subtype 1 vs 2, 2 vs 3, 1 vs 3 gives p-values of 0.14, 0.26, 0.82.
Thus the null hypothesis cannot be rejected, suggesting that
the mean ages in the subtypes are equal. The male population
is distributed in the three subtypes as 11.8%, 72.6%, 15.6%.
The female population is distributed as 14.1%, 66.4%, 19.5%.
A chi-square test, evaluating the null hypothesis that these
distributions are equal, gives a p-value of 0.46, suggesting that
the null hypothesis cannot be rejected again. In spite of that,
the female population is slightly more dispersed with subtypes
1 and 3 having larger fractions of the population.

D. Model Validation and Results Sensitivity

Finally, we turn to evaluating other aspects of the model:
the use of t-distributions for model residues, the train-test
consistency of the model residue, and the sensitivity of the
result to caudate and putamen templates.

1) Validating the residue distribution: We validate the
model residue distribution by using a Q-Q plot, i.e. by plotting
the quantiles of the model residues against that of a normal
distribution and a t-distribution for each region and each
subtype. Fig. 8 shows Q-Q plots of the putamen residues (the

Fig. 8. Q-Q plots of the model residue vs normal (blue cross) and vs t-
distribution (green circle) for the putamina.

caudate residues show a similar trend and are omitted to save
space) and fitted lines representing a perfect fit to a residue
model. A Q-Q plot crossing the line at a steeper slope implies
that the data have heavier tails than the assumed distribution.
It is clear from Fig. 8 that the residues in all three subtypes
have significantly heavier tails than the normal distribution.
And the t-distribution assumption appears to be a significant
improvement over the normal distribution assumption in every
subtype.

2) Train-test consistency of the model residue: To test
whether our algorithm overfits the data, we also evaluated the
train-test consistency of the model residue with 10-fold cross
validation. Specifically, nine folds were taken as the training
set with K = 3 to estimate parameters θ̂, ν̂. These parameters
were applied to the subjects in the remaining fold (test set) to
predict their subtypes (via arg maxk p

(
z = k|x, θ̂, ν̂

)
using

Eq. (S20) in Supplementary Section V) and the norms of the
model residues ‖εij‖ were calculated from the subtype Âk
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Fig. 9. Box plots of model residues from training sets and test sets in the 10-
fold cross validation. The whiskers correspond to ±2.7σ and 99.3% coverage
if the residues are normally distributed. Residues beyond the limit of y-axis
are not shown.
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(a) Masks dilated by 1 voxel (b) Masks dilated by 2 voxels

Fig. 10. Bayesian model selection for dilated masks. The y-axis has two scales
corresponding to log-likelihood value (blue solid square) and final number of
nonempty subtypes (orange dashed star) respectively.

according to Eq. (2).
Fig. 9 shows box plots of training and test set residues. For

clarity, only the scatter of the residues in the extreme quantiles
is shown. Fig. 9 shows that our algorithm does not overfit the
data (overfitting would lead to substantially larger test errors).

3) Sensitivity to caudate and putamen masks: Partial vo-
luming and small variations in subject-specific anatomy can
potentially affect the estimated model parameters. To test
the sensitivity to these, we further dilated the caudate and
putamen masks by 1 and 2 voxels and then filtered them with
a Gaussian filter having σ = 0.5 pixels. We re-estimated the
parameters using Bayesian analysis with these dilated masks.
Dilating by 1 voxel increases the volume of the mask by
55% for caudate and 41% for putamen (133% and 101%
when dilating 2 voxels). Even with such large changes to the
masks, the number of subtypes (see Fig. 10) as well as the
parameter estimates were similar to the original estimates. The
number of subtypes remained at 3, and the relative changes
in the transition matrices of the three subtypes, calculated as
‖Âk − Âdilated

k ‖F /‖Âk‖F , were 0.04, 0.08, 0.11 for masks
dilated by 1 voxel and 0.47, 0.19, 1.67 for masks dilated by 2
voxels. We also calculated the Rand index between the subtype
labels in Section V-C and the labels estimated using the dilated
masks. For masks dilated by 1 voxel, the Rand index was 0.92,
while for masks dilated by 2 voxels, the Rand index was 0.73.
This implies that the progression pattern and subtyping are not
sensitive to partial volume effects or anatomical variations.

E. Correlation with MDS-UPDRS scores

Finally, we sought correlation between DaTscan-based pro-
gression subtypes and clinical movement scores as present in

the Part III of the MDS-UPDRS exam. In PPMI, longitudinal
scores of each patient are sampled more frequently than
DaTscan images: at 3 months intervals for the first year,
at 6 months intervals for the next 4 years, and at 1 year
intervals for the following 3 years. We retained only those
scores that corresponded to the imaging times. Part III scores
can be influenced by medication, but PPMI provides scores
for subjects in the off-medication state. We only used the off-
medication scores.

MDS-UPDRS Part III has 36 scores of which we retained
the first 33 for every subject for every imaging time. The last
three ratings (“were dyskinesias present?”, “did these move-
ments interfere with your ratings?”, “Hoehn and Yahr stage”)
were discarded either because they were non-informative (all
subjects scored the same score) or because they could be
considered a summary of other ratings (e.g. “Hoehn and Yahr
stage”).

In the PD literature, Part III scores are added to create
a single number which summarizes the state of movement
disorder for the patient. This summed score is called Total
Movement Score (TMS) [47]. Larger values of TMS reflect
worse PD symptoms. Fig. 11 shows the scatter plots of TMS
for all subjects in the three progression subtypes. The plots
in Fig. 11 also show the best-fit linear time regression to the
scores. A slope, intercept and a p-value are calculated from
the best-fit line. The p-value corresponds to testing the null
hypothesis that the slope of the best-fit line is 0. A p-value less
than 0.05 indicates that the slope is not zero, at a significance
level of 0.05.

Fig. 11 shows that regressing TMS linearly with time for
all subtypes gives a positive slope with a p-value significantly
less than 0.05. Moreover, the slope for subtype 1 is bigger than
the slopes for subtype 2 and subtype 3, which is consistent
with image-based progression – subtype 1 has the fastest
progression. The slope for subtype 2 is only slightly bigger
than that for subtype 3, implying that the difference in terms of
clinical symptom progression rate of TMS between subtype 2
and subtype 3 is smaller. Thus, TMS progression is consistent
with DaTscan progression subtypes.

VI. DISCUSSION

A. The MLDS Model

MLDS models the mean SBR from the caudates and the
putamina. This is consistent with almost all of the PD DaTscan
analysis literature, e.g. [48], [47]. In spite of its popularity, we
readily acknowledge that there are limitations to this paradigm:
the posterior-to-anterior anatomical gradient of disease pro-
gression in the striatum cannot be captured by mean SBRs.
Moreover, extra-striatal structures such as the globus pallidus
and the thalamus are also affected by PD [49], [50], but they
are not included in the model. Clearly, what is needed is a
finer grained model which also takes striatal subregions and
extra-striatal regions into account. We plan to address this in
the future.

The MLDS model can be generalized to other longitudinal
datasets as long as the underlying progression satisfies a
linear differential equation. For example, it can be naturally
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Fig. 11. Linear regression to the MDS-UPDRS Part III total scores for each subtype. The p-value is for the null hypothesis that the slope is 0.

extended to high dimensional features (e.g. voxelwise SBR)
from DaTscan images by imposing a low-rank constraint on
the transition matrices. Another example is the graph diffusion
equation for modeling the progression of misfolded protein in
the brain’s connectivity network [23], where the connectivity
information can be encoded in the prior to constrain the
transition matrices.

B. Inferred Subtypes and Progression Patterns

The subtypes found by Bayesian inference clearly capture
the progression heterogeneity as it manifests in DaTscans.
Evidence, presented in Supplementary Section VI-B, shows
that the subtypes do not represent time delayed versions of a
single progression prototype.

The subtypes have different progression speeds with sub-
type 1 having the fastest progression, subtype 2 having a
more moderate progression, and subtype 3 having the slowest
progression. The values for πk in Table II suggest that slightly
more than half of the PD subjects belong to subtype 2,
the remaining divided between subtype 1 and 3. Thus, one
interpretation of the subtypes is that subtype 2 represents
typical progression, while subtypes 1 and 3 represent the
extremes of progression.

The presence of three progression subtypes in the PPMI
dataset is also supported by other machine learning ap-
proaches. For example, Zhang et al. combine image and non-
image features in the PPMI dataset (SBR, clinical scores,
biospecimen exams) in a deep learning framework to find
moderate, mild, and rapid progression subtypes [35]. How-
ever, that analysis does not reveal any eigenvectors or time
constants. And our analysis only uses DaTscans.

It is remarkable that the eigenvector with the fastest time
constant in all three subtypes corresponds to conversion from
asymmetry to symmetry. The decrease of asymmetry in (non-
DaTscan) PET images has been noted in the previous research
[4], [51]. What MLDS reveals is that the decrease in asym-
metry has the fastest possible time constant amongst all linear
combinations of LC, LP, RP, RC.

The correlation between image-based subtypes and MDS-
UPDRS Part III scores shows that at a group level, the pro-
gression rates measured by DaTscans reflect the progression
rates of clinical symptoms. Note that in the PD literature, the
reported correlations between DaTscans and UPDRS scores
are usually quite small, ranging in magnitude from 0.1 to
0.3. The PD literature also suggests that correlations between

changes in DaTscans and MDS-UPDRS are not significant
[47]. However, these studies do not take subtypes into account.
Our results show that TMS changes in the subtypes are similar
to the subtype progression rates.

VII. CONCLUSIONS

This paper introduced a new longitudinal model and a
Bayesian inference methodology for identifying progression
subtypes and for finding disease progression patterns and their
time constants for PD. The model is a mixture of linear
dynamical systems, and is based on identifying key properties
of PD progression. The model introduces several new ideas
to PD modeling: coupled progression of multiple regions
with population mirror symmetry, t-distributed model residues,
mixtures of dynamical systems for heterogeneity, and a proper
Bayesian analysis using Gibbs sampling.

Three image-based progression subtypes are found, differ-
ing in progression speeds. Each subtype displays characteristic
spatial progression patterns with associated time constants.
The fastest progression pattern in all subtypes is the loss of
hemispheric asymmetry, while the slowest progression pattern
is the change in the mean SBR. This finding has implications
for clinical trials that assess the effectiveness of disease
modifying therapies. The DaTscan-based subtypes also have
different TMS progression rates.
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Supplementary Material for “Robust Bayesian
Analysis of Early-Stage Parkinson’s Disease

Progression Using DaTscan Images”
Yuan Zhou, Sule Tinaz, and Hemant D. Tagare

Abstract

This supplementary material gives details of the Gibbs sampling algorithm mentioned in Section IV of the
manuscript. We start with introducing the background of Gibbs sampling. Then we present the posterior predictive
distributions related to the conjugate priors used in the paper. These predictive distributions are used in deriving the
collapsed Gibbs sampler. Implementation issues such as convergence and label switching are discussed afterwards.
Besides the sampling algorithm, this document also gives details on calculating the marginal likelihood for model
selection, and on predicting future time points. Finally, additional results for the pre-processing procedure and the
clustered subtypes are included.

I. INTRODUCTION

We begin by recalling that we refer to the time series of the ith subject as xi = {xi1, . . . ,xiTi} with time intervals
{∆ti1, . . . ,∆ti,Ti−1} and the set of all time series as X = {x1, . . . ,xN}. Our goal is to infer the parameters θ
and ν from X. To achieve this, we use Gibbs sampling to generate samples of the parameters as well as the latent
variables, i.e. we generate samples from p (z,θ,W, ν|X,α,β,γ). The Gibbs sampling algorithm we use for this
purpose is iterative; each iteration first samples from z,θ conditioned on remaining variables, and then samples
from W, ν conditioned on remaining variables:

z,θ ∼ p (z,θ|X,α,β,γ,W, ν) ,

W, ν ∼ p (W, ν|X,α,β,γ, z,θ) .

Because the above random variables are related via a graphical model, the conditioning simplifies to conditioning
on the Markov blanket of the variables that are being sampled. The Markov blanket MB (u) of any random variable
u includes its parents, children, and children’s parents. The Markov blankets can be easily read off from Fig. S1(a).
According to Fig. S1(a), we only need to sample using the following simplified conditioning:

p (z,θ|X,α,β,γ,W, ν) = p (z,θ|MB (z,θ)) = p (z,θ|X,α,β,W) ,

p (W, ν|X,α,β,γ, z,θ) = p (W, ν|MB (W, ν)) = p (W, ν|X,γ, z,θ) .

Our Gibbs sampler is standard, except when sampling z. Sampling z is via a special scheme called collapsed
Gibbs sampling. The reason for using collapsed Gibbs sampling is that it is more efficient than regular Gibbs
sampling [1], [2]. In collapsed sampling, we sample from p (z,θ|X,α,β,W) with θ integrated out, i.e. we sample
from p (z|X,α,β,W). It is worth noting that after integrating out θ, the original graphical model in Fig. S1(a)
becomes the graphical model in Fig. S1(b), where the conditional independence of {zi} given π no longer holds
and all the zis in p (z|α) are dependent on each other. The same happens after integrating out Ak, σ

2
k, i.e. {xi}

becomes dependent given β. Collapsed sampling of p (z|X,α,β,W) proceeds by sampling each zi sequentially
from

p (zi|MB (zi)) = p (zi = k|z−i,X,α,β,W) . (S1)

The details of how this sampling is carried out are given in Section III-A.
Once z is sampled from p (z|X,α,β,W), we sample θ from p (θ|z,X,α,β,W) since

p (z,θ|X,α,β,W) = p (z|X,α,β,W) p (θ|z,X,α,β,W) .

Finally, sampling W, ν follows the standard Gibbs sampler by sampling one variable conditioned on its Markov
blanket. Following Fig. S1(a):

p (π|MB (π)) = p (π|z,α) , (S2)
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α

π Ak σk
K

β

zi

xi1 xi2

· · ·
xi,Ti

Σ

wi1 · · · wi,Ti−1

N

ν

γ α

zi· · · · · ·z1 zN ν

γ

xi· · · · · ·x1 xN

β

wiw1 wN

(a) Original graphical model (b) Graphical model with θ integrated out

Fig. S1. Probabilistic graphical model of the MLDS with t-distributed residues. (a) shows the original model that features a standard structure of
four layers: hyperparameters (α,β,γ), parameters to infer (θ =

{
π,Ak, σ

2
k

}
, ν), latent variables (z = (z1, . . . , zN ), W = {w1, . . . ,wN}),

and observed data (X = {x1, . . . ,xN}). (b) shows the model used in the collapsed Gibbs sampling where θ is integrated out.

p
(
Ak, σ

2
k|MB

(
Ak, σ

2
k

))
= p

(
Ak, σ

2
k|β,X, z,W

)
= p

(
Ak, σ

2
k|β,Xk,Wk

)
, (S3)

p (wij |MB (wij)) = p
(
wij |xi,j+1, zi = k,Ak, σ

2
k, ν,xij

)
, (S4)

p (ν|MB (ν)) = p (ν|W,γ) . (S5)

where Xk = {xj : zj = k, j = 1, . . . , N} (the same for Wk).
The formulae for Eqs. (S2) and (S4) are given in Section III-A. To obtain formulae for Eqs. (S3) and (S5), we

need conjugate priors on Ak, σ
2
k and ν. These priors are provided in Section II. Combining the conjugate priors and

the derived closed forms of these distributions, the algorithm samples from Eqs. (S1) - (S5) iteratively. The whole
algorithm is presented in detail in Section III-B. Preliminary results on convergence are provided in Section III-C.
Finally, besides the sampling scheme, additional information on model selection and prediction using the model is
given in Section IV and Section V respectively.

II. CONJUGATE PRIORS, POSTERIORS, AND POSTERIOR PREDICTIVE DENSITIES

A. Conjugate prior for Ak, σ
2
k

Suppose X = {x1, . . . ,xN} and xi = {xi1, . . . ,xiTi}. Combining

p
(
xi,j+1|xij , wij ,A, σ2

)
= N

(
xi,j+1|xij + ∆tijAxij ,∆t

2
ijσ

2ID/wij
)
. (S6)

for all j, the distribution of xi is

p
(
xi|A, σ2,wi

)
= p (xi1)

Ti−1∏
j=1

p
(
xi,j+1|xij ,A, σ2, wij

)
=

p (xi1)
∏
j w

D/2
ij

(2πσ2)
(Ti−1)D/2∏

j ∆tDij
e−

1
2σ2

∑
j wij‖vij−Axij‖2 , (S7)

where vij =
xi,j+1−xij

∆tij
. Representing A using a basis E of the subspace of centrosymmetric matrices, we have

vec (A) = Ea. Rewriting Eq. (S7) by expanding the sum in its exponential term as a quadratic term of a, we have

p
(
xi|a, σ2,wi

)
=
h(xi)

σdi
e−

1
2σ2

[aTΛ(xi)a−2µ(xi)
T a+ε(xi)] (S8)
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where di = (Ti − 1)D,

h(xi) =
p (xi1)

∏
j w

D/2
ij

(2π)
(Ti−1)D/2∏

j ∆tDij
, µ(xi) = ET

Ti−1∑
j=1

wijvec
(
vijx

T
ij

)
, (S9)

Λ(xi) = ET

Ti−1∑
j=1

wijxijx
T
ij ⊗ ID

E, ε(xi) =

Ti−1∑
j=1

wijv
T
ijvij . (S10)

Eqs. (S9) and (S10) define the notations h,µ,Λ, ε via the formulae on the right hand sides. Note that {∆tij : j =
1, . . . , Ti − 1}, Ti, and wi are implicitly used and change per index i. Hence, h,µ,Λ, ε are not functions of xi
(i.e. xi = xj does not imply h(xi) = h(xj)) but rather functions of the subject index.

The exponent in equation (S8) is a quadratic semi-definite form in a, while σ2 plays the role similar to the
variance of a normal density. From standard conjugate prior theory, we know that that the conjugate prior to a and
σ2 is normal-inverse-Gamma [3]. The exact form is given in the theorem below.

Theorem 1. Suppose {xi ∈ RD×Ti : i = 1, ..., N} are N conditionally independent random variables with
probability densities p

(
xi|a, σ2

)
given by Eq. (S8), then the joint density of X = {x1, . . . ,xN} has a conjugate

prior in the form of normal-inverse-gamma (NIG) with hyperparameters β = {µ0,Λ0, ν0, κ0},
p
(
a, σ2|β

)
= NIG

(
a, σ2|µ0,Λ0, ν0, κ0

)
= N

(
a|µ0, σ

2Λ−1
0

)
IG
(
σ2|ν0, κ0

)
where Λ0 is positive definite and IG (x|a, b) = ba

Γ(a)x
−(a+1)e−

b
x . Using the conjugate prior, the posterior density

of a, σ2 is also NIG:
p
(
a, σ2|X,β

)
= NIG

(
a, σ2|µp,Λp, νp, κp

)
,

where

νp = ν0 +
1

2

∑
i

di,

Λp = Λ0 +
∑
i

Λ(xi),

µp = Λ−1
p

(
Λ0µ0 +

∑
i

µ(xi)

)
, and,

κp = κ0 +
1

2

(
µT0 Λ0µ0 +

∑
i

ε(xi)− µTp Λpµp

)
. (S11)

Proof: To simplify the notation in this proof, we use hi, εi,µi and Λi, to represent h(xi), ε(xi),µ(xi) and
Λ(xi) respectively.

The probability density of X conditioned on a, σ2 is

p
(
X|a, σ2

)
=
∏
i

p
(
xi|a, σ2

)
=

∏
i hi

σ
∑
i di

e−
1

2σ2

∑
i(aTΛia−2µTi a+εi)

=

∏
i hi

σ
∑
i di

e
− 1

2σ2

[
aT (

∑
i Λi)a−2(

∑
i µi)

T
a+
∑
i εi
]
.

Using the prior, the posterior density of a, σ2 is

p
(
a, σ2|X,µ0,Λ0, ν0, κ0

)
∝ p

(
a, σ2|µ0,Λ0, ν0, κ0

)
p
(
X|a, σ2

)
= |Λ0|

1
2 (2π)

−D2 κν00

Γ (ν0)

(
1

σ2

)D
2 +ν0+1

e−
1

2σ2
[2κ0+(a−µ0)TΛ0(a−µ0)]

∏
i hi

σ
∑
i di

e
− 1

2σ2

[
aT (

∑
i Λi)a−2(

∑
i µi)

T
a+
∑
i εi
]

∝
(

1

σ2

)D
2 +ν0+1+

∑
i di
2

e
− 1

2σ2

[
2κ0+(a−µ0)TΛ0(a−µ0)+aT (

∑
i Λi)a−2(

∑
i µi)

T
a+
∑
i εi
]
.
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Straightforward algebraic manipulation simplifies the exponential term to

2κ0 + (a− µ0)
T

Λ0 (a− µ0) + aT

(∑
i

Λi

)
a− 2

(∑
i

µi

)T
a +

∑
i

εi

=
(
a− µp

)T
Λp

(
a− µp

)
+ 2κp,

where

Λp = Λ0 +
∑
i

Λi, µp = Λ−1
p

(
Λ0µ0 +

∑
i

µi

)
, κp = κ0 +

1

2

(
µT0 Λ0µ0 +

∑
i

εi − µTp Λpµp

)
.

Hence, the posterior is NIG

p
(
a, σ2|X,µ0,Λ0, ν0, κ0

)
∝
(

1

σ2

)D
2 +νp+1

e
− 1

2σ2

[
(a−µp)

T
Λp(a−µp)+2κp

]
,

with νp = ν0 +
∑
i di
2 .

One consequence of Theorem 1 is that the posterior predictive density can be explicitly stated:

Corollary 2. Following the definitions and notations of Theorem 1, supposing that we have a new time series
x ∈ RD×T with the same form in Eq. (S8) and functions h, ε,µ,Λ of x, the posterior predictive density of x given
old data X = {x1, . . . ,xN} and hyperparameter β is

p (x|X,β) =

∫ ∫
p
(
x|a, σ2

)
p
(
a, σ2|X,β

)
dadσ2

=

∫ ∫
p
(
x|a, σ2

)
NIG

(
a, σ2|µp(X),Λp(X), νp(X), κp(X)

)
dadσ2

=h(x)
|Λp|1/2

|Λp + Λ (x)|1/2
Γ
(
νp + d

2

)
Γ (νp)

κ
− d2
p

[
1 +

Q (x)

2κp

]−(νp+ d
2 )
,

where
Q(x) = µTp Λpµp + ε(x)−

(
Λpµp + µ(x)

)T
(Λp + Λ(x))

−1 (
Λpµp + µ(x)

)
.

and d = (T − 1)D.

Proof: As we did for the proof of Theorem 1, in this proof too we simplify notations. We use Λ,µ and Q to
represent Λ(x),µ(x) and Q(x). Rearranging

p
(
a, σ2|x,µp,Λp, νp, κp

)
=

p
(
x|a, σ2

)
NIG

(
a, σ2|µp,Λp, νp, κp

)∫ ∫
p (x|a, σ2) NIG

(
a, σ2|µp,Λp, νp, κp

)
dadσ2

gives ∫ ∫
p
(
x|a, σ2

)
NIG

(
a, σ2|µp,Λp, νp, κp

)
dadσ2 =

p
(
x|a, σ2

)
NIG

(
a, σ2|µp,Λp, νp, κp

)
p
(
a, σ2|x,µp,Λp, νp, κp

) .

Thus the integral can be calculated by evaluating the numerator and denominator on the right hand side.
Using Theorem 1, we have

p
(
a, σ2|x,µp,Λp, νp, κp

)
= NIG

(
a, σ2|µ′p,Λp + Λ, νp +

d

2
, κ′p

)
,

where
µ′p = (Λp + Λ)

−1 (
Λpµp + µ

)
κ′p = κp +

1

2

(
µTp Λpµp + ε−

(
Λpµp + µ

)T
(Λp + Λ)

−1 (
Λpµp + µ

))
.
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Thus ∫ ∫
p
(
x|a, σ2

)
NIG

(
a, σ2|µp,Λp, νp, κp

)
dadσ2

=
p
(
x|a, σ2

)
NIG

(
a, σ2|µp,Λp, νp, κp

)
p
(
a, σ2|x,µp,Λp, νp, κp

)
=

h
σd
e−

1
2σ2

(aTΛa−2µT a+ε) |Λp|
1
2 (2π)

−D2 κ
νp
p

Γ(νp)

(
1
σ2

)D
2 +νp+1

e
− 1

2σ2

[
2κp+(a−µp)

T
Λp(a−µp)

]

|Λp + Λ| 12 (2π)
−D2 (κ′p)

νp+
d
2

Γ(νp+ d
2 )

(
1
σ2

)D
2 +νp+ d

2 +1
e
− 1

2σ2

[
2κ′p+(a−µ′p)

T
(Λp+Λ)(a−µ′p)

] .

The three exponential terms cancel out, giving∫ ∫
p
(
x|a, σ2

)
NIG

(
a, σ2|µp,Λp, νp, κp

)
dadσ2

=
h

σd
|Λp|

1
2

|Λp + Λ| 12
Γ
(
νp + d

2

)
Γ (νp)

(
1

σ2

)− d2 κ
νp
p(

κ′p
)νp+ d

2

= h
|Λp|

1
2

|Λp + Λ| 12
Γ
(
νp + d

2

)
Γ (νp)

κ
− d2
p

[
1 +

Q

2κp

]−(νp+ d
2 )
,

where
Q = µTp Λpµp + ε−

(
Λpµp + µ

)T
(Λp + Λ)

−1 (
Λpµp + µ

)
.

B. Conjugate prior for ν

The conditional density p (W|ν) belongs to the exponential family:

p (W|ν) =

N∏
i=1

Ti−1∏
j=1

Ga
(
wij |

ν

2
,
ν

2

)

=

[ (
ν
2

) ν
2

Γ
(
ν
2

)]
∑
i(Ti−1)

∏
i

∏
j

w−1
ij

 eν·
1
2

∑
i,j(logwij−wij).

and hence has the conjugate prior

p (ν|γ) ∝
[ (

ν
2

) ν
2

Γ
(
ν
2

)]ξ0 eτ0ν , ν > 0

where γ = (ξ0, τ0). The posterior has the same form as the prior

p (ν|W,γ) ∝ p (ν|γ) p (W|ν) =

[ (
ν
2

) ν
2

Γ
(
ν
2

)]ξ0+
∑
i(Ti−1)

eν[τ0+ 1
2

∑
i,j(logwij−wij)]. (S12)

III. GIBBS SAMPLING FOR THE MLDS

The Gibbs sampler uses the conjugate priors and predictive densities established in the previous section. The
reader is warned that the notation for describing a Gibbs sampler in mixture models gets pretty complicated. The
complication arises because we have to repeat calculations that are similar to those in Eqs. (S11) for different
subsets of X. To simplify the notation, we will first define a notation for the sets that we use, and then define the
how the calculations in Eqs. (S11) are carried out for these sets:
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Notation for sets:
1) We use subscript k to denote random variables associated with all subjects whose z takes the value k, e.g.

Xk = {xj |zj = k, j = 1, . . . , N}, Wk = {wj |zj = k, j = 1, . . . , N}.
2) We use subscript −i to denote random variables associated with subjects whose indices are not i, e.g.,

z−i = {zj : j 6= i, j = 1, . . . , N}, X−i = {xj : j 6= i, j = 1, . . . , N}.
3) We also define the sets X−i,k = {xj : j 6= i, zj = k, j = 1, . . . , N}, and similarly, W−i,k = {wj : j 6=

i, zj = k, j = 1, . . . , N}.
Notation for calculations: To represent calculations that are similar to those in Eqs. (S11) but carried out with

the above sets, we adopt the following convention: Suppose U is any subset of X, e.g. U = Xk, or U = X−i,k.
Then we use the notation Λp(U) to denote the calculation of Λp in Eqs. (S11) where the sum on the right hand
side is carried out using information from all subjects whose time series is in U. Similarly νp(U),µp(U), and
κp(U) denote the calculations in Eq. (S11) where the sums in the right hand side of the equations are carried out
using information from all subjects whose time series are in U. Thus, terms such as Λp(X−i) and Λp(X−i,k) are
well defined. Finally we remind the reader that subscript p in Λp etc. refers to the posterior probability density.
Without the subscript, the terms h,µ,Λ, ε are defined only for a single time series as given in Eqs. (S9) and (S10).
Similar to h,µ,Λ, ε, the notations νp,Λp,µp, κp should not be seen as functions of U, but rather they are functions
of the subject indices.

A. Derivation of the Gibbs sampler

1) Sample p (z|X,α,β,W) by collapsed Gibbs sampling: This is achieved by sampling each zi sequentially
conditioned on the other zi’s:

p (zi = k|z−i,X,α,β,W)

∝p (zi = k|X−i, z−i,α,β,W) p (xi|zi = k,X−i, z−i,α,β,W)

=p (zi = k|z−i,α) p (xi|zi = k,X−i,k,β,Wk) . (S13)

An explanation of the last step in equation (S13) is as follows: Consider the term p (zi = k|X−i, z−i,α,β,W).
According to Fig. S1(b), the Markov blanket of zi is α, z−i,xi,wi,β. Since xi is not involved in the conditioning,
the correlated X−i and its parents (β and W) are independent of zi. Thus p (zi = k|X−i, z−i,α,β,W) can be
reduced to p (zi = k|z−i,α). The second term in Eq. (S13) simplifies because each Xk = {xj : zj = k, j =
1, . . . , N} is independently generated by β after integrating out Ak, σ2

k. If the parents of xi are known and zi = k,
all the other {Xl : l 6= k} become independent of xi.

The first term in Eq. (S13) can be calculated by the following strategy: Assuming α = (α/K, . . . , α/K), and
integrating out π gives

p (z|α) =

∫
p (π|α)

∏
i

p (zi|π) dπ =
Γ (α)

Γ (N + α)

K∏
k=1

Γ (Nk + α/K)

Γ (α/K)
, (S14)

where Nk =
∑N
i=1 I (zi = k) and I (·) = 1 if the the argument of I is true and zero otherwise. Hence the first term

in Eq. (S13) is

p (zi = k|z−i,α) =
p (zi = k, z−i|α)

p (z−i|α)
=
N−i,k + α/K

N + α− 1

where N−i,k =
∑
j 6=i I (zj = k).

The second term in Eq. (S13) is

p (xi|zi = k,X−i,k,β,Wk)

=

∫ ∫
p
(
xi|ak, σ2

k,wi

)
p
(
ak, σ

2
k|X−i,k,β,W−i,k

)
dakdσ

2
k

which is calculated according to Corollary 2 in Section II-A.
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2) Sample p (θ|z,X,α,β,W): Given z, we can partition X, the set of all time series into subsets {Xk : k =
1, . . . ,K} where the kth subset contains all time series for which z = k. Then, sampling Ak and σ2

k follows
Theorem 1:

p
(
ak, σ

2
k|β,Xk,Wk

)
= NIG

(
ak, σ

2
k|µp(Xk),Λp(Xk), νp(Xk), κp(Xk)

)
.

Sampling π follows the standard posterior density

p (π|z,α) = Dir (π|α/K +N1, . . . , α/K +NK) . (S15)

3) Sample p (W, ν|X,γ, z,θ): Next, we sample W from p(wij |xi,j+1, zi = k,Ak, σ
2
k, ν,xij), and sample ν

from p(ν|W,γ). Using p (wij |ν) = Ga
(
wij |ν2 , ν2

)
and p(xi,j+1|wij , zi = k,Ak, σ

2
k,xij) in (S6), the posterior of

wij is calculated as

p
(
wij |xi,j+1, zi = k,Ak, σ

2
k, ν,xij

)
∝p (wij |ν) p

(
xi,j+1|wij , zi = k,Ak, σ

2
k,xij

)
=Ga

(
wij |

D

2
+
ν

2
,
ν

2
+

1

2σ2
k

‖vij −Akxij‖2
)
. (S16)

Using a conjugate prior, p (ν|W,γ) has a form in (S12) (see Section II-B). Since p (ν|γ) is a log-concave function
(d

2 log p(ν|γ)
dν2 < 0 for all ν > 0), adaptive rejection sampling (ARS) is used to sample ν [4].

B. The Gibbs sampling algorithm

We can now state the entire Gibbs sampling algorithm in detail.
1. First sample p(z,θ|X,α,β,W) as follows:

1.1. Sample z from p(z|X,α,β,W) by sequentially sampling zi from

p(zi = k|z−i,X,α,β,W) ∝ p(zi = k|z−i,α)p(xi|zi = k,X−i,k,β,Wk). (S17)

1.1.1. Calculate p(zi = k|z−i,α) =
N−i,k+α/K
N+α−1 .

1.1.2. Calculate

p(xi|zi = k,X−i,k,β,Wk)

=
h(xi)

κp(X−i,k)
di
2

|Λp(X−i,k)| 12
|Λp(X−i,k) + Λ(xi)|

1
2

Γ
(
νp(X−i,k) + di

2

)
Γ (νp(X−i,k))

[
1 +

Q

2κp(X−i,k)

]−(νp(X−i,k)+
di
2

)
(S18)

where

Q = −
(
Λp(X−i,k)µp(X−i,k) + µ(xi)

)T
(Λp(X−i,k) + Λ(xi))

−1 ×(
Λp(X−i,k)µp(X−i,k) + µ(xi)

)
+ µp(X−i,k)TΛp(X−i,k)µp(X−i,k) + ε(xi)

and di = (Ti − 1)D, where Ti is the number of time points.
1.2. Sample θ from p(θ|z,X,α,β,W).

1.2.1. Sample π from Dir(π| αK +N1, . . . ,
α
K +NK).

1.2.2. Sample Ak, σ
2
k from NIG

(
ak, σ

2
k|µp(Xk),Λp(Xk), νp(Xk), κp(Xk)

)
.

2. Next, sample p(W, ν|X,γ, z,θ):
2.1. Sample wij from Ga(wij |D2 + ν

2 ,
ν
2 + 1

2σ2
k
‖vij −Akxij‖2) where k = zi.

2.2. Sample ν from p(ν|W,γ) ∝
[

( ν2 )
ν
2

Γ( ν2 )

]ξ0+
∑
i(Ti−1)

× eν[τ0+ 1
2

∑
i,j(logwij−wij)] using adaptive rejection

sampling (ARS) [4].
The above algorithm has an intuitive interpretation. Each class label zi is sampled based on the cluster size N−i,k

and similarity of its data point xi to that cluster. The robustness comes from the weight variables {wij}. Since a
Gamma distribution Ga (x|a, b) has mean a

b and variance a
b2 , when we have a large ‖vij −Akxij‖ (e.g. outlier

xi,j+1), we are likely to sample a small wij , which in turn makes this data negligible in calculating the sufficient
statistics in (S9) and (S10).
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Fig. S2. NLL of 10 runs on the PPMI DaTscan dataset.

We want to make some remarks about the implementation. First, h(xi) can be removed in calculating (S18)
because it appears in the numerator and the denominator. The term h(xi) appears in the denominator because it
appears in (S17) which involves a partition function that sums over all k. Because h(xi) involves an evaluation of
p (xi1), and h(xi) cancels, the density of the initial data can be ignored.

Second, most of the complexity of the algorithm comes from sampling zi sequentially. Examining the algorithm
carefully shows that the posterior predictive density relies on a sum of the sufficient statistics µ(xi),Λ(xi), ε(xi)
for all the subjects in a cluster (see Eq. (S11)). Storing these sums in each cluster, and when assigning a new class
label to a subject, subtracting the sufficient statistics of the subject from the sums in the old cluster and adding
the same amount to the new cluster is an efficient way to update the sufficient statistics. With this in mind, the
computational cost of sampling zi can be analyzed as follows.

Let R be the number of basis in E, calculating µ(xi),Λ(xi), ε(xi) takes O(TiD
2 +RD2), O(TiD

2 +RD4 +
R2D2), O(TiD) respectively. The complexity of adding and subtracting these terms from the summed sufficient
statistics is negligible. The calculation of the posterior parameters for X−i,k using Eq. (S11), is dominated by the
inversion of Λp which has complexity O(R3). Then, using the calculated posterior parameters, calculating Q in
Eq. (S18) is dominated by the inversion of Λp(X−i,k)+Λ(xi), whose complexity is O(R3). Since the determinant
in (S18) also has computational complexity O(R3), the entire calculation of Eq. (S18) has complexity O(R3). The
above computation needs to be repeated for K clusters in Eq. (S17), N subjects, and L iterations. In our case,
R = 1

2D
2, Ti < R, hence the entire complexity of sampling z is O(LNKD6). The complexity of sampling z

dominates the entire algorithm. Though O(LNKD6) looks expensive, for our data, D = 4, K = 3, N = 365,
L = 1500, which makes the algorithm fairly efficient on a modern computer. For example, on a computer with a
Intel Xeon W-2155 CPU, 64 GB memory, running 5 chains in parallel, takes 450 seconds.

C. Convergence and other issues

Next we discuss the convergence of the sampler and its robustness to label switching.
1) Convergence: Using the PPMI data, we ran 10 Markov chains of the Gibbs sampler for 1500 iterations using

random initialization. Fig. S2 shows the negative log-likelihoods (NLL) in each chain as a function of iteration
number. Clearly all chains have converged within 100 iterations and entered their stationary distributions (this fast
convergence is likely due to the collapsed Gibbs sampler). To be conservative, when processing PPMI data, we
use 1500 iterations and discard the first half as a burn-in period. Also notice that in Fig. S2, 9 of the 10 chains
have converged to the same distribution. Empirically, we found that running 5 chains and picking the commonly
converged chains was sufficient to give a stable result most of the time. We discarded the remaining chains, and
used one converged chain for analysis.

2) Label switching: In Gibbs sampling for mixture models, there is a label switching problem because the
posterior p (z|X,α,β,W) has K! symmetric modes [5]. When a Markov chain is run for extended time, it tends
to visit all modes uniformly. The resulting p (z|X,α,β,W) has its labels switched (each mode corresponds to a
permutation of the class labels) and the mean of the samples generated by these chains is not very meaningful.
Fortunately, label switching seldom happens for relatively short chains [6].
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To check if label switching happens in our dataset, we employ the following strategy: First, from amongst all
z’s generated by the sampler, we choose the one that has the highest log-likelihood, and call it a template. Then
for every z generated by the sampler, we find the permutation of labels that makes z most consistent with the
template. If this permutation is the identity permutation, then no label switching has occurred. Thus, we count the
percent of z’s in the entire sampling chain in which no label switching has occurred. In the synthetic experiments
(3×10×10 runs) (Section V-B in the paper), for the overwhelming majority of the runs this percentage was 100%
(one run scored at 99.9%, and one run scored at 99.5% for the synthetic data with large noise). No label switching
was detected in the PPMI dataset.

IV. MODEL SELECTION

We use importance sampling to approximate the integral
∫
p (X|θ, ν) p (θ, ν|ηK) dθdν since samples from

p (θ, ν|ηK) mostly contribute zeros to p (X|θ, ν). Denoting f (θ, ν) = p (X|θ, ν) and p̃ (θ, ν) = p (θ, ν|ηK),
our goal is to calculate

∫
f (θ, ν) p̃ (θ, ν) dθdν.

We use the proposal density q (θ, ν) = p (θ, ν|X,ηK) since the Gibbs sampler has already generated samples
{θl, νl : l = 1, . . . , L} from this density, and it is also the optimal importance distribution in terms of minimizing
the variance of the estimate (see Section 23.4 in [1]). Since

q (θ, ν) = p (θ, ν|X,ηK) ∝ p (θ, ν|ηK) p (X|θ, ν,ηK) ,

we use the unnormalized version q̃ (θ, ν) = p (θ, ν|ηK) p (X|θ, ν) for importance sampling. It has the integral∫
f (θ, ν) p̃ (θ, ν) dθdν ≈

L∑
l=1

wlf (θl, νl) ,

where wl = w̃l∑
i w̃i

and

w̃l =
p̃ (θl, νl)

q̃ (θl, νl)
=

1

p (X|θ = θl, ν = νl)
.

Hence, ∫
f (θ, ν) p̃ (θ, ν) dθdν ≈

L∑
l=1

w̃l∑
i w̃i

f (θl, νl)

=

L∑
l=1

1
p(X|θ=θl,ν=νl)∑
i

1
p(X|θ=θi,ν=νi)

p (X|θ = θl, ν = νl)

=
L∑

l p (X|θ = θl, ν = νl)
−1 .

V. PREDICTION

Given the samples from the posterior distribution p (z,θ,W, ν|X,ηK), we can predict values at a future time
point of a new test series. With slight abuse of notation, suppose the test series is x = {x1, . . . ,xT } with ∆tj
being the time interval between xj and xj+1. Given parameters θ, ν and the first j points of a series, the probability
density function of the (j + 1)th time point is

p (xj+1|x1:j ,θ, ν) =
∑
k

p (xj+1|x1:j , z = k,θ, ν) p (z = k|x1:j ,θ, ν)

=
∑
k

p
(
xj+1|xj ,Ak, σ

2
k, ν
)
p (z = k|x1:j ,θ, ν) ,

where x1:j = {x1, . . . ,xj}, p
(
xj+1|xj ,Ak, σ

2
k, ν
)

is given by

p
(
xj+1|xj ,Ak, σ

2
k, ν
)

= T
(
xj+1|xj + ∆tjAkxj ,∆t

2
jσ

2
kID, ν

)
(S19)
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and

p (z = k|x1:j ,θ, ν) =
πkp

(
x1:j |Ak, σ

2
k, ν
)∑

l πlp (x1:j |Al, σ2
l , ν)

. (S20)

Then the expected value of xj+1 given the first j time points and θ, ν is easily obtained as

E (xj+1|x1:j ,θ, ν) =

∫
xj+1p (xj+1|x1:j ,θ, ν) dxj+1

=
∑
k

p (z = k|x1:j ,θ, ν) (xj + ∆tjAkxj) . (S21)

Using Eq. (S21), we can predict xj+1 given a point estimate of θ, ν or the full posterior.
If we have a point estimate θ̂, ν̂ of the model parameters, e.g. θ̂ = E (θ|X,ηK), ν̂ = E (ν|X,ηK) from the

inference algorithm, we can directly plug it into (S21) and use the expected value as prediction. If we have a full
posterior p (θ, ν|X,ηK), we can do it by integrating θ, ν out. Considering

p (xj+1|x1:j ,X,ηK) =

∫
p (xj+1|x1:j ,θ, ν) p (θ, ν|X,ηK) dθdν,

the expected value given the training data is

E (xj+1|x1:j ,X,ηK) =

∫
xj+1p (xj+1|x1:j ,X,ηK) dxj+1

=

∫
p (θ, ν|X,ηK)

∫
xj+1p (xj+1|x1:j ,θ, ν) dxj+1dθdν

≈ 1

L

L∑
l=1

E (xj+1|x1:j ,θ = θl, ν = νl) ,

which averages the expected values from the generated parameter samples by reusing (S21).

VI. RESULTS

A. Pre-processing

Recall that the PPMI image data are pre-processed in two steps: first, subjects with only one scan are excluded;
and second, subjects with misregistered images are excluded. The IDs of the excluded subjects are listed below.
• Single scan (67 in total): 3006, 3025, 3026, 3081, 3127, 3129, 3133, 3164, 3167, 3177, 3210, 3232, 3236,

3279, 3280, 3281, 3282, 3284, 3285, 3288, 3289, 3290, 3311, 3314, 3322, 3330, 3331, 3332, 3333, 3376,
3413, 3447, 3501, 3510, 3533, 3534, 3535, 3536, 3618, 3623, 3626, 3628, 3632, 3633, 3663, 3764, 3800,
3827, 3833, 3837, 3858, 3863, 3867, 3958, 3962, 3971, 4003, 4006, 4016, 4017, 4061, 4062, 4069, 4075,
4097, 4136, 4137.

• Misregistration (17 in total): 3360, 3407, 3419, 3420, 3421, 3422, 3434, 3451, 3455, 3557, 3605, 3711, 3791,
3953, 3972, 4121, 4135.

B. The three subtypes

We provide additional results to show that the subtypes do not correspond to different stages. If the subtypes
correspond to different stages of a single set of disease trajectories, then the baseline SBR and TMS distributions
in the subtypes should show a separation. These distributions are shown as histograms in Fig. S3 with the mean
± standard deviation bars on the top. The figure clearly shows that there is no systematic drift in the histograms
to make such a separation. This is not surprising given the properties of our model. First, since the A matrices
are very different (see Table II in the main paper), trajectories from different subtypes cannot be obtained by
time transformations of each other. Second, assuming different subtypes being at different stages of a single set of
trajectories would imply a single subtype model fitting the data given the semi-group property, which is not true
as shown in Fig. 4 and Fig. 10 in the main paper.
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(a) Histograms of mean SBR at baseline (b) Histograms of TMS at baseline

Fig. S3. Histograms of mean SBR (a) and TMS (b) at baseline for the three subtypes. Mean SBR is calculated by averaging the SBRs of the
4 regions. Bars indicating mean ± std are shown above the histograms.
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